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Abstract
This paper deals with regularization and noise level control of source depending only on the spatial variable in the heat
equation. In this problem, the Krylov method is employed to get the regularization solution and control noise level in case
perturbation. Various numerical tests are given to verify the efficiency of the proposed method and until what point the
method resist at the perturbations.
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I. Introduction

The inverses problems are a very active area of mathematical and numerical research over the past 50 years,
with applications of significant economic and societal impact.
We seek to regularized the solution of an inverse problem identification of source and how to control noise
level for noisy data. These problems are ill-posed, and for a stable numerical approximation of the solution
some regularization techniques have to be applied. The formal solution is written as a Fourier series with high
frequency (via its spectral eigen function expansion). We suggest a regularization procedure based on the
Krylov method. We give a theoretical analysis of these methods, and some numerical examples to show the
accuracy. With a live control in Krylov subspace, the exact controllability for the heat equation is impractical
and we will be content with an approximate control result. Our objective will then be to determine the cost of
the approximate control.

Position of the problem

We consider the following inverse problem: Find the pair of functions (u(x,t),f(x)) which satisfies: (cf.[1])

∂u

∂t
− ∂

2u

∂x2 = f(x) 0< x < 1, 0< t≤ 1
u(x,0) = 0, 0≤ x≤ 1
∂u

∂x
(0, t) = ∂u

∂x
(1, t) = 0, 0≤ t≤ 1

u(x,1) = g(x), 0≤ x≤ 1.

(1)

u(x,t) is the body temperature at a given point x of the axis at a given time t, and f(x) is the unknown source
of heat depending only on the spatial variable x.
This problem is called the inverse problem of identification of unknown source.
The boundary conditions: {

u(x,0) = 0, 0≤ x≤ 1
∂u

∂x
(0, t) = ∂u

∂x
(1, t) = 0, 0≤ t≤ 1

(2)

The final condition: u(x,1) = g(x), where g is a given measurement input internal. In applications, the
input data g(x) can only be measured, and there will be measured data function gδ(x) which is merely in
L2(0,1) and satisfies

‖g−gδ‖L2(0,1) ≤ δ (3)
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where the constant δ > 0 represents a noise level of input data.
By the separation of variables, the solution of Problem (1) can be obtained as follows:

u(x,t) =
∞∑
n=1

1−e−n2π2t

n2π2 fnen (4)

where
{en =

√
2cosnπx,(n= 1,2, · · ·)} (5)

is an orthogonal basis in L2(0,1), and

fn =
√

2
∫ 1

0
f(x)cos(nπx)dx. (6)

Making use of the final condition :

g(x) =
∞∑
n=1

(g,en)en =
∞∑
n=1

gnen =
∞∑
n=1

1−e−n2π2

n2π2 fnen (7)

and defining the operatorK : f −→ g, we obtain:

g(x) =Kf(x) =
∞∑
n=1

1−e−n2π2

n2π2 fnen. (8)

It is easy to see thatK is a linear compact operator, and the singular values {γn}∞n=1 ofK are

γn = 1−e−n2π2

n2π2 ,(n= 1,2, · · ·). (9)

On the other hand
gn = (g,en) = γnfn(en,en) (10)

i.e.,
fn = γ−1

n gn. (11)
Therefore

f(x) =K−1g(x) =
∞∑
n=1

1
γn
gnen =

∞∑
n=1

n2π2

1−e−n2π2 gnen. (12)

Note that 1
γn
−→∞ if n−→∞, which makes a small perturbation g cause the explosion of the solution. So,

the problem is ill-posed because the solution does not continuously depend on the initial data. As there is no
source of heat which is supplied indefinitely, we posed the question of the applicability of an effective method
of truncation for the identification and regularization of the solution. This instability results from the behavior
of high frequencies.
We propose In this paper:

• In section 2, We propose a method of spectral truncation to construct a stable approximation of the
solution by projecting it onto a space of small size called Krylov space to be able to compute it
numerically.

• Section 3 suggest a regularization procedure based on the spectral truncation method and the Krylov
method.

• Section 4 give a theoretical analysis of these methods, and some numerical examples to show the
accuracy.

• And finally, in Section 4 we some remarks and conclusion.

II. Stabilization and approximation

We now want to address the issue of stabilization in the case of noise-impaired data, because the data available
are experimental, which implies the existence of measurement errors. This cause of uncertainty induces a
fuzzy image because of the sensitivity of the inverse problems to the uncertainties, and the interpretation of the
answers becomes almost impossible and generates a great risk.

We suppose now that the data u(τ) = g is tainted by (inaccurate) noise, ie, we have an approximation gδ de
g : ‖gδ−g‖ ≤ δ, δ is the noise level.
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1. Approaching Problem (1) by the Krylov Method

Let H = L2(0,1). We consider Problem (1): Find the pair of functions (u(x,t),f(x)) that satisfies

∂u

∂t
− ∂

2u

∂x2 = f(x) 0< x < 1, 0< t≤ 1
u(x,0) = 0, 0≤ x≤ 1
∂u

∂x
(0, t) = ∂u

∂x
(1, t) = 0, 0≤ t≤ 1

u(x,1) = g(x), 0≤ x≤ 1.
It is easy to see that the pair of functions

u(x,t),f(x)) =
(

1−e−π2t

π2 cos(πx), cos(πx)
)

(13)

is the exact solution of Problem (1.1). Consequently, the data function is g(x) = 1−e−π2

π2 cos(πx).
You can put the couple in the form of solution:(

u(x,t),f(x)
)

=
(

(1−e−π
2t)cos(πx),π2cos(πx)

)
(14)

and
g(x) = (1−e−π

2
)cos(πx). (15)

Appoximation (cf.[7]) and (cf.[8])

Either the system Au = v⇔ u = ϕ(A)v. Our goal is to obtain a solution approached this system that is
sufficiently precise for the needs and lowest possible cost of calculation.
The heat source identified is given by equation (12) :

f(x) =K−1g(x) =
+∞∑
n=1

1
γn
gnen =

+∞∑
n=1

n2π2

1−e−n2π2 gnen.

Which can be written numerically f(x) =
N∑
n=1

ϕ(λn)gnen, whereϕ(s) = s

1−e−s , λn, and en are, respectively,

the eigenvalues and eigenvectors of the matrix of the discretized operator Ah or g(x) =
N∑
n=1

gnen. So, f is of

the form
f = ϕ(A)g = (In−exp(−A))−1Ag (16)

where f,g ∈ Rn, A ∈Mn(R).
Let A be the unbounded operator defined by: D(A) = {u ∈H1(0,1);u′(1) = u′(0) = 0}

Au=−d
2u

dx2
(17)

where D(A) is the domain of definition of the operator A.

Proposition 0.1. The operator A is self-adjoint and positive. (cf.[6])

Discretization and projection of the solution

After the semi-discretization of the operator A, we have:

Ah = 1
h2



1 −1 0 0 . . 0 0
−1 2 −1 0 . . 0 0
0 −1 2 −1 0 . . 0
. 0 . . . . . .
. . . . . . . .
0 0 . . 0 −1 2 −1
0 0 . . 0 0 −1 1


(18)

The matrix Ah is tridiagonal and symmetric by construction.

Proposition 0.2. The matrix Ah is symmetric and positive (cf.[3]).
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2. Arnoldi approximation order m of f(Ah)v

There exist very effective methods that achieve good approximates fm even for fairly small m. Such a method
is the Arnoldi method:

• Generate an orthonormal basis V m= [v1,v2, ...,vm] ofKm(Ah,v) using a Gram-Schmidt procedure
that satisfies (cf.[4])

V tmAhVm =Hm, (19)

where Hm ∈Mm(R) is an upper Hessenberg matrix.

• The Arnoldi approximation of order m (cf.[2]) and (cf.[5]) is defined as

fm = ‖v‖Vmf(Hm)e1. (20)

where em = [0,0, ....,0,1]t
IfA is Hermitian thenHm is tridiagonal. Instead of orthonormalizing the vector vm against all preceding
v1,v2, ...,vm−1 , there exists a three-term recurrence involving only vm−2, vm−1 and vm. This
method is called the Lanczos method and in comparison to the Arnoldi method.

• Computation cost decreases rapidly (since only 2 orthogonalizations per time step are necessary).

III. Regularization by spectral truncation and Krylov method

To construct a stable approximation for (12), one truncates the series of fourier and one takes only the finite
part.

Definition 0.3. For N > 0, we define the regularized solution of the problem (12) for exact (respectively
inaccurate) data as follows:

fN =
N∑
k=1

(
λk

1−e−τλk

)
< g,ξk > ξk, (21)

fδN =
N∑
k=1

(
λk

1−e−τλk

)
< gδ, ξk > ξk, (22)

This method is known as spectral truncation which eliminates the high frequencies responsible for
instability.

Theorem 0.4. We suppose f ∈B(p,E) = {f ∈D(Ap) : ‖Apf‖ ≤E}, p > 0, and let λN+1 ≈
(
E

δ

)1/(2+p)
,

then we have the following error estimate:

‖f −fδN‖ ≤Kδ
p
p+2E

2
p+2 , (23)

where K = (1 +M) = 1 + 1
1−e−τλ1 .

Proof. Note

ωk = λk
1−e−τλk

≤ λk
1−e−τλ1

=Mλk,

gk = 〈g,ξk〉, gδk = 〈gδ, ξk〉.

Using the triangular inequality, we can write

‖f −fδN‖= ‖f −fN +fN −fδN‖ ≤ ‖f −fN‖+‖fN −fδN‖= ∆1 + ∆2. (24)

∆2
1 = ‖f −fN‖2 =

∥∥∥∥∥
∞∑
k=1

fkξk−
N∑
k=1

fkξk

∥∥∥∥∥
2

=
∞∑

k=N+1
|fk|2. (25)

∆2
2 = ‖fN −fδN‖2 =

∥∥∥∥∥
N∑
k=1

ωkgkξk−
N∑
k=1

ωkg
δ
kξk

∥∥∥∥∥
2

=
N+1∑
k=1

ω2
k|gk−gδk|2. (26)

∆2
1 =

∞∑
k=N+1

λ−2p
k λ2p

k |fk|
2 ≤ λ−2p

N+1

∞∑
k=N+1

λ2p
k |fk|

2 ≤ λ−2p
N+1E

2. (27)
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∆2
2 =

N+1∑
k=1

ω2
k|gk−gδk|2 ≤ λ2

N+1M
2
N+1∑
k=1
|gk−gδk|2 ≤ λ2

N+1M
2δ2. (28)

which implies

∆1 + ∆2 ≤ λ−2p
N+1E+λ2

N+1Mδ ≈

((
E

δ

) 1
2+p
)−p

E+Mδ

(
E

δ

) 2
2+p

= (1 +M)E
2

2+p δ
2p

2+p . (29)

Identity (22) indicates that fδN (x) is close to the exact solution f(x) when the parameter N becomes very
large. On the other hand, if the parameter N is fixed, fδN (x) is bounded. So the positive integer N plays the
role of a regularization parameter.

Remark 0.5. If p > 0, ‖f −fδN‖ ≤ (1 +M)E
2

2+p δ
2p

2+p −→ 0 as δ −→ 0. Hence fδN (x) can be viewed as
the approximation of the exact solution f(x).

IV. Numerical Results

We give the numerical results by the Krylov method for the exact data and the noisy data to see the efficiency
of the method in the face of a perturbation. the following perturbation:

gδ = g+ε× randn(size(g)) (30)

with ‖g−gδ‖L2(0,1) ≤ δ where the constant δ > 0 represents the noise level of the input data.
The function ′′Randn(·)′′ generates arrays of random numbers whose elements are normally distributed with
mean 0,variance σ2 = 1, and standard deviation σ = 1. ′′Randn(size(g))′′ returns an array of random entries
that is the same size as g. We take in pratical

δ = ‖g−gδ‖2 (31)

and use Trapezoid’s rule to approach the integral and choose the sum of the frontM terms to approximate the
solution . After considering an equidistant grid

0 = x0 < x1 < .. . < xM = 1, xk = k

M
, k = 0, . . . ,M

with
h= 1

M
and M is the constant parameter.

Identity (22) indicates

fδN (x) =
∫ 1

0
2
N∑
n=1

1
σn
gδ(s)cos(nπs)cos(nπx)ds (32)

At the point xi we have

fδN (xi) = 2
M∑
k=1

N∑
n=1

1
σn
gδ(xk)cos(nπxk)cos(nπxi)h (33)

Knowing that

‖f‖2 =

√∫ 1

0
f(x)2dx

and ∫ 1

0
f(x)2dx= 1

N

N∑
i=1

fi
2.

So replacing f by g−gδ and by calculating numerically with the trapezoid method, we obtain:

δ = ‖g−gδ‖2 =
(

1
N

N∑
i=1

(gi−gδ,i)2
) 1

2
(34)
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To test the accuracy of the approximate solutions, we use error defined as:

θm = ‖f −fδm‖ ≤ 2‖g‖
+∞∑
k=m
|hk|

θm ≤ 2‖g‖
(

2max
(
M1,4 + a(ρ1 + c)

µ

)
×

(
(c+α)2

(
1 + 4π2

a2α2

))−m
2

1−
(

(c+α)2
(

1 + 4π2
a2α2

))−1
2

+

8π
a

∣∣∣∣ φ(c+ 2πi
a )−m−1

(1 +φ(c+ 2πi
a )−1)(1−φ(c+ 2πi

a )−1)2

∣∣∣∣+
8π
a

∣∣∣∣ φ(c− 2πi
a )−m−1

(1 +φ(c− 2πi
a )−1)(1−φ(c− 2πi

a )−1)2

∣∣∣∣
)

The error was published in a hypertext link in the last part of the Bibliography.

1. exact data in case of Neumann condition

We took N = 200,m= 100, and as the starting vector of the Lanczos Algorithm (cf.[5]) v = g, with g ∈ RN ,
which is the test function.

0 50 100 150 200
−10

−8

−6

−4

−2

0

2

4

6

8

10
Exact and approximate Solutions

 

 
Exact
Krylov

a
0 50 100 150 200

−10

−8

−6

−4

−2

0

2

4

6

8

10
Exact Solution and SVD Solution

 

 
SVD
Exact

b

Figure 1: Graphical representation:(a) exact solution and approximation of Krylov, (b) exact solution and
singular value decomposition (SVD) solution.
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Figure 2: Graphical representation:(c) exact solution, approximation of Krylov and SVD solution, (d)
respective errors.

Remark 0.6. • The SVD (Singular Value Decomposition) is the method used by Matlab to calculate the
matrix functions.

• The advantage of using this method of Lanczos is due to its ability to allow the calculation of a small
part of the spectrum without having to calculate the entire spectrum.
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2. exact data in case of Dirichlet condition

For case of Dirichlet condition, the matrix Ah = 1
h2 Tridiag[−1,2,−1] ∈MN (R) is tridiagonal, symmetric

and positive definite matrix.
We took N = 200,m= 100, and as the starting vector of the Lanczos Algorithm v = g, with g ∈ RN , which
is the test function.
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Figure 3: Graphical representation:(e) exact solution and approximation of Krylov, (f) error between the exact
solution and approximation of Krylov.

3. noisy data in case of Neumann condition

We took N = 200,m= 100, and as starting vector of Lanczos Algorithm v = g, with g ∈ RN (which is the
test function), and ε≤ 10−3 we have:
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cFigure 4: Graphical representation: (a) exact solution, approximation of Krylov and SVD solution
(b) error between exact solution and pproximation of Krylov
(c) errors between approximation of Krylov and SVD solution
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Errors can be seen that do not amplify during the course of the algorithm, and the method remains
stable. Perturbation techniques show that the solutions of the perturbed system are close to the solution of the
unperturbed system with the precision control parameter to 10−3 close.
Remark 0.7. The problem (1) from the numerical point of view is more difficult when comparing with the
Dirichlet problem. Indeed, the operator A is self-adjoint, positive and λ= 0 is an eigenvalue. This induces a
technical difficulty when we pass to the discrete problem.

V. Discussion

In this study, a convergent and stable reconstruction of an unknown source heat has been obtained using two
regularizing methods: spectral truncation method and Krylov method. We have shown that the Krylov method
which was known for its theoretically regulating effect is even better numerically. We limited ourselves to a
few cases of perturbation and controlled the noise level by the regularization of the solution.
This problem has a real impact on the reconstruction of fuzzy images of medical X-ray.

Future work will involve the problem of approximating a solution of an ill-posed biparabolic problem in
the abstract setting and estimate error between the exact solution and approximation solution.
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